关于八皇后问题的 JavaScript 解法,总觉得是需要学习一下算法的,哪天要用到的时候发现真不会就尴尬了
八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上
八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为 n×n ,而皇后个数也变成n 。当且仅当n = 1
或n ≥ 4
时问题有解
通过N重循环,枚举满足约束条件的解(八重循环代码好多,这里进行四重循环),找到四个皇后的所有可能位置,然后再整个棋盘里判断这四个皇后是否会直接吃掉彼此,程序思想比较简单
function check1(arr, n) {
for(var i = 0; i < n; i++) {
for(var j = i + 1; j < n; j++) {
if((arr[i] == arr[j]) || Math.abs(arr[i] - arr[j]) == j - i) {
return false;
}
}
}
return true;
}
function queen1() {
var arr = [];
for(arr[0] = 1; arr[0] <= 4; arr[0]++) {
for(arr[1] = 1; arr[1] <= 4; arr[1]++) {
for(arr[2] = 1; arr[2] <= 4; arr[2]++) {
for(arr[3] = 1; arr[3] <= 4; arr[3]++) {
if(!check1(arr, 4)) {
continue;
} else {
console.log(arr);
}
}
}
}
}
}
queen1();
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]
关于结果,在 4*4 的棋盘里,四个皇后都不可能是在一排, arr[0] 到 arr[3] 分别对应四个皇后,数组的下标与下标对应的值即皇后在棋盘中的位置
『走不通,就回头』,在适当节点判断是否符合,不符合就不再进行这条支路上的探索
function check2(arr, n) {
for(var i = 0; i <= n - 1; i++) {
if((Math.abs(arr[i] - arr[n]) == n - i) || (arr[i] == arr[n])) {
return false;
}
}
return true;
}
function queen2() {
var arr = [];
for(arr[0] = 1; arr[0] <= 4; arr[0]++) {
for(arr[1] = 1; arr[1] <= 4; arr[1]++) {
if(!check2(arr, 1)) continue; //摆两个皇后产生冲突的情况
for(arr[2] = 1; arr[2] <= 4; arr[2]++) {
if(!check2(arr, 2)) continue; //摆三个皇后产生冲突的情况
for(arr[3] = 1; arr[3] <= 4; arr[3]++) {
if(!check2(arr, 3)) {
continue;
} else {
console.log(arr);
}
}
}
}
}
}
queen2();
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]
算法框架
while(k > 0 『有路可走』 and 『未达到目标』) { // k > 0 有路可走
if(k > n) { // 搜索到叶子节点
// 搜索到一个解,输出
} else {
//a[k]第一个可能的值
while(『a[k]在不满足约束条件且在搜索空间内』) {
// a[k]下一个可能的值
}
if(『a[k]在搜索空间内』) {
// 标示占用的资源
// k = k + 1;
} else {
// 清理所占的状态空间
// k = k - 1;
}
}
}
具体代码如下,最外层while下面包含两部分,一部分是对当前皇后可能值的遍历,另一部分是决定是进入下一层还是回溯上一层
function backdate(n) {
var arr = [];
var k = 1; // 第n的皇后
arr[0] = 1;
while(k > 0) {
arr[k-1] = arr[k-1] + 1;
while((arr[k-1] <= n) && (!check2(arr, k-1))) {
arr[k-1] = arr[k-1] + 1;
}
// 这个皇后满足了约束条件,进行下一步判断
if(arr[k-1] <= n) {
if(k == n) { // 第n个皇后
console.log(arr);
} else {
k = k + 1; // 下一个皇后
arr[k-1] = 0;
}
} else {
k = k - 1; // 回溯,上一个皇后
}
}
}
backdate(4);
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]
递归调用大大减少了代码量,也增加了程序的可读性
var arr = [], n = 4;
function backtrack(k) {
if(k > n) {
console.log(arr);
} else {
for(var i = 1;i <= n; i++) {
arr[k-1] = i;
if(check2(arr, k-1)) {
backtrack(k + 1);
}
}
}
}
backtrack(1);
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]
什么是 amb ?给它一个数据列表,它能返回满足约束条件的成功情况的一种方式,没有成功情况就会失败,当然,它可以返回所有的成功情况。笔者写了上面那么多的重点,就是为了在这里推荐这个amb算法,它适合处理简单的回溯场景,很有趣,让我们来看看它是怎么工作的
首先来处理一个小问题,寻找相邻字符串:拿到几组字符串数组,每个数组拿出一个字符串,前一个字符串的末位字符与后一个字符串的首位字符相同,满足条件则输出这组新取出来的字符串
ambRun(function(amb, fail) {
// 约束条件方法
function linked(s1, s2) {
return s1.slice(-1) == s2.slice(0, 1);
}
// 注入数据列表
var w1 = amb(["the", "that", "a"]);
var w2 = amb(["frog", "elephant", "thing"]);
var w3 = amb(["walked", "treaded", "grows"]);
var w4 = amb(["slowly", "quickly"]);
// 执行程序
if (!(linked(w1, w2) && linked(w2, w3) && linked(w3, w4))) fail();
console.log([w1, w2, w3, w4].join(' '));
// "that thing grows slowly"
});
看起来超级简洁有没有!不过使用的前提是,你不在乎性能,它真的是很浪费时间!
下面是它的 javascript 实现,有兴趣可以研究研究它是怎么把回溯抽出来的
function ambRun(func) {
var choices = [];
var index;
function amb(values) {
if (values.length == 0) {
fail();
}
if (index == choices.length) {
choices.push({i: 0,
count: values.length});
}
var choice = choices[index++];
return values[choice.i];
}
function fail() { throw fail; }
while (true) {
try {
index = 0;
return func(amb, fail);
} catch (e) {
if (e != fail) {
throw e;
}
var choice;
while ((choice = choices.pop()) && ++choice.i == choice.count) {}
if (choice == undefined) {
return undefined;
}
choices.push(choice);
}
}
}
以及使用 amb 实现的八皇后问题的具体代码
ambRun(function(amb, fail){
var N = 4;
var arr = [];
var turn = [];
for(var n = 0; n < N; n++) {
turn[turn.length] = n + 1;
}
while(n--) {
arr[arr.length] = amb(turn);
}
for (var i = 0; i < N; ++i) {
for (var j = i + 1; j < N; ++j) {
var a = arr[i], b = arr[j];
if (a == b || Math.abs(a - b) == j - i) fail();
}
}
console.log(arr);
fail();
});
这是八皇后问题的JavaScript解法,整个程序都没用for循环,都是靠递归来实现的,充分运用了Array对象的map, reduce, filter, concat, slice方法
'use strict';
var queens = function (boarderSize) {
// 用递归生成一个start到end的Array
var interval = function (start, end) {
if (start > end) { return []; }
return interval(start, end - 1).concat(end);
};
// 检查一个组合是否有效
var isValid = function (queenCol) {
// 检查两个位置是否有冲突
var isSafe = function (pointA, pointB) {
var slope = (pointA.row - pointB.row) / (pointA.col - pointB.col);
if ((0 === slope) || (1 === slope) || (-1 === slope)) { return false; }
return true;
};
var len = queenCol.length;
var pointToCompare = {
row: queenCol[len - 1],
col: len
};
// 先slice出除了最后一列的数组,然后依次测试每列的点和待测点是否有冲突,最后合并测试结果
return queenCol
.slice(0, len - 1)
.map(function (row, index) {
return isSafe({row: row, col: index + 1}, pointToCompare);
})
.reduce(function (a, b) {
return a && b;
});
};
// 递归地去一列一列生成符合规则的组合
var queenCols = function (size) {
if (1 === size) {
return interval(1, boarderSize).map(function (i) { return [i]; });
}
// 先把之前所有符合规则的列组成的集合再扩展一列,然后用reduce降维,最后用isValid过滤掉不符合规则的组合
return queenCols(size - 1)
.map(function (queenCol) {
return interval(1, boarderSize).map(function (row) {
return queenCol.concat(row);
});
})
.reduce(function (a, b) {
return a.concat(b);
})
.filter(isValid);
};
// queens函数入口
return queenCols(boarderSize);
};
console.log(queens(8));
// 输出结果:
// [ [ 1, 5, 8, 6, 3, 7, 2, 4 ],
// [ 1, 6, 8, 3, 7, 4, 2, 5 ],
// ...
// [ 8, 3, 1, 6, 2, 5, 7, 4 ],
// [ 8, 4, 1, 3, 6, 2, 7, 5 ] ]
回溯算法是很常用的基本算法,认真掌握是没有错的,笔者也是一边学习一边写下本篇,学习内容来源
文章转载自笔者个人博客 Gaoxuefeng's Blog
扫码关注w3ctech微信公众号
个人建站,做技术问答的,目前最火的是前端领域,欢迎一起交流!——http://www.dreawer.com
共收到1条回复