近期给实习生介绍一些基本概念,顺便梳理一下文章,方便之后可重复利用。 从事Web开发必须要了解从浏览器输入URL后到页面加载完之后的整个大概的流程,当然可以就某些点细化的研究下去,这一过程涉及到:HTTP/HTTPS协议、代理/反向代理、Web server、CGI、浏览器端的知识(HTML+Javascript+CSS) 只有把整个流程都梳理清楚,才有能力去讨论其他问题,例如如何去优化Web性能、如何利用工程化提高效率、在某些业务场景的技术方案取舍等。 本篇文章会以一个例子介绍计算机网络基本工作的过程,最终再详细介绍HTTPS是如何解决网络包加密问题。绘说明图找不到相关好的工具,所以文章引用了几张来自《图解TCP/IP》的图
我们来看一个常常出现的场景: Alice在淘宝买了一件衣服,我们输入收货地址收货人付款后,卖家Bob帮我们把衣服打包放进纸箱里,贴上一个快递单:
寄件人:Bob 地址:北京市朝阳区朝阳路1号 收件人:Alice 地址:广东省广州市新港中路197号C公司 快递公司D派人去Bob家收到包裹,接着整理了公司的包裹,分批往个个城市送货。由于D公司没有直达广州的货运车,因此这些包裹先随着去上海的车到达上海的中转站之后,再把要发往广州的包裹搬到另一辆车发往广州中转站。 快递员Rapheal把快递送到C公司,快递中心的前台mm帮Alice签收后转交给了Alice。
以上的场景几乎就是计算机网络的场景了,我们做个类比(类比只到网络层):
朝阳路1号 == 北京某台计算机ip地址 新港中路197号 == 广州某台计算机的ip地址 快递单 == 包头 衣服 == 包体 快递公司的中转站 == 交换机/路由器 Bob == 北京某台计算机的进程B(端口) Alice == 广州C公司局域网里边的某台计算机的进程A(端口) C公司的快递中心 == C公司局域网的网关
上述类比并不严谨,这里仅仅简单解释一下网络里边发送/接收包的大概过程跟概念:
首先接入网络的计算机/路由器都要有一个ip地址,例如Alice的ip地址是120.0.0.2,Bob的ip地址是150.0.0.2。
图片来自《图解TCP/IP》
Alice发送HTTP数据给Bob,实际上是Alice机器上的的进程a发送数据,Bob机器上的的进程b在接收数据,因为真正想要数据的进程才是最终应用层。
所以Alice跟Bob通信实际上等价于:120.0.0.2的2048端口发送数据到150.0.0.2的4096端口 Alice的计算机发送数据:
进程a先把数据打包好,贴上单(HTTP协议头部):我来自Chrome浏览器; 我要Bob的index.html
这个包裹丢给快递公司(网络),接着就是快递公司负责送往目的地Bob的机器了。 路由器转发数据包:
快递公司中转站负责把当前的包裹传递到下一个快递中心,这也是路由器转发的原理
Bob的计算机接收数据包:
协议的目的就是让通信的双方知道当前这个数据包是怎么样一个组成格式,一般:包头就是双方约定好的一些信息,包体就是这次通信传输的数据。 Alice拿到快递之后从快递单(包头)就可以知道是Bob发给他的衣服,然后拆开之后就拿到衣服(包体),从而完成了此次通信。所以协议本身并没有那么复杂难解:协议 == 包头 + 包体。 协议繁琐的地方在于,计算机怎么识别每一层的包头,识别后做什么操作。例如路由器要识别出IP,然后决定当前数据包往那个地方转发;浏览器要识别出包头的Content-type,来决定当前这个包体是图片还是HTML。 刚刚说了包体其实就是数据本身,数据本身就没什么好理解的了,数据是什么,它就是什么,所以理解每一层的协议就在于理解其包头的含义。所以接下来我以HTTP头来介绍HTTP协议。
刚刚说到其实协议就是让浏览器跟服务器互相知道他们要什么,因此浏览器发给服务器的包就要带着一些用户操作信息,服务器发给浏览器的包就要带着用户想要的数据信息。 当浏览器输入一个URL,相当于浏览器发起一个HTTP请求包出去,浏览器会把一些自身信息以及用户操作的信息写在包头上带到服务器,这样服务器才知道你在用什么浏览器想请求它的什么资源。
HTTP请求包的常见包头如下(紫色为说明文字):
HTTP响应包常见的包头如下:
北京的Bob发了一个快递到广州的Alice,途中经过了上海,上海快递中心出现了一个黑客H,他偷偷打开了Bob给Alice的快递,然后偷偷把里边的衣服剪烂,再按照原样包装好发往广州,可以看到对于这样简单包装的传输在中途是可以偷偷修改里边的东西。 HTTP的数据包是明文传输,也即是如果中途某个黑客嗅探到这个HTTP包,他可以偷偷修改里边包的内容,至于Bob跟Alice是互相不知道这个动作的,因此我们必须要有一个方案来防止这种不安全的篡改行为,有个方法就是加密!
Bob将衣服放到一个保险箱里边锁起来,他打了个电话告诉Alice保险箱开柜密码是1234,而黑客H不知道密码,所以他看不到保险箱里边的东西,Alice收到快递后用预先沟通好的密码就可以打开保险箱了。 这里保护的手段就是Bob对物品进行加密,同时给了告诉Alice解密的方法! 那如果现在要求Bob的密码只能通过快递传给Alice呢?如果Bob直接传密码给Alice,H如果嗅探到这个快递,那H也知道密码了,这就无法保护快递的安全性了。因此还需要有个方案,让Bob能够告诉Alice密码的同时,H又无法查看到Bob跟Alice通信的数据。 非对称加密在这个时候就发挥作用了,来看看怎么回事:Bob拥有两把钥匙,一把叫做公钥,一把叫做私钥。公钥是公开让全社会都知道,没关系,Bob告诉所有人,你们要传递数据给我的时候请先用这个密钥去加密一下你们的数据,加密后的数据只能通过Bob私自藏着的私钥才能解密。 回到刚刚例子,Bob先发给保险柜(Bob公钥)给Alice,接着Alice把自己的保险柜(Alice公钥)放到Bob的保险柜里边发还给Bob,接着Bob拿到Alice的回包后,用自己的私钥解开了外层保险柜,拿到了里边Alice保险柜。此时Alice跟Bob都有了各自的公钥,接着只要保证每次互相传递数据的时候,把数据放在对方的保险柜里边即可,这样无论如何,H都无法解开保险柜(因为只有各自的私钥才能解开各自的保险柜)。
为了使得HTTP传输的安全性,HTTPS就诞生了,同刚刚Bob跟Alice通信一样,HTTPS会有如下的过程:
那HTTPS是不是任何情况都安全的呢?从刚刚的例子中我们可以看到HTTPS其实是一个端到端的安全保障,HTTPS保障的是你这个数据包在传输的过程中无法被查看,但是这个数据包也是可以被黑客偷偷丢掉或者毁坏。来看看HTTPS在什么情况下是不安全的:
扫码关注w3ctech微信公众号
原谅我眼里只看到了Alice和Bob,似乎又回到了网络安全的课堂
写的细腻,感觉把公钥和私钥描述成”开着的保险箱”和“关着的保险箱”会更好理解。
共收到2条回复